1. Timokhin IV, Matveev SA, Siddharth N, Tyrtyshnikov EE, Smirnov AP, Brilliantov NV. Newton method for stationary and quasi-stationary problems for Smoluchowski-type equations. Journal of Computational Physics. 2019;382:124-37.

2. Santo KP, Vishnyakov A, Brun Y, Neimark AV. Critical Conditions of Adhesion and Separation of Functionalized Nanoparticles on Polymer Grafted Substrates. Journal of Physical Chemistry C. 2019;123(26):16091-106.

3. Brilliantov NV. Time correlation functions and kinetic coefficients in systems with molecular or chemical exchange. Journal of Molecular Liquids. 2019;286.

4. Bodrova AS, Stadnichuk V, Krapivsky PL, Schmidt J, Brilliantov NV. Kinetic regimes in aggregating systems with spontaneous and collisional fragmentation. Journal of Physics a-Mathematical and Theoretical. 2019;52(20).

5. T Weathers, A Vishnyakov, Y Chiew, A Hosangadi: “Characterizing Thermodynamic Properties of Pure Components and Binary Mixtures at Rocket Conditions Using Molecular Dynamics”AIAA Scitech 2019 Forum, 2019, p. 1284-1288 https://doi.org/10.2514/6.2019-1284

6. Palyulin V.V., Blackburn G., Lomholt M.A., Watkins N.W., Metzler R., Klages R., Chechkin A.V., “First-passage and first-hitting of Levy flights and Levy walks”, New J. Phys., 2019, 21, 103028.

7. Smirnov, A.M., Golinskaya, A.D., Kotin, P.A. ,Dorofeev, S.G., Zharkova, E.V., Palyulin, V.V. , Mantsevich, V.N., Dneprovskii, V.S., “Damping of Cu-Associated Photoluminescence and Formation of Induced Absorption in Heavily Cu-Doped CdSe Quantum Dots”, J. Phys. Chem. C, 2019, 123, 27986-27992.

8. Smirnov, A. M., Golinskaya, A. D., Kotin, P. A., Dorofeev, S. G., Palyulin, V. V., Mantsevich, V. N., Dneprovskii, V. S., “Photoluminescence and nonlinear transmission of Cu-doped CdSe quantum dots”, Journal of Luminescence, 2019, 213, 29-35.

9 Feng, M. Chen, S. Bi, Z. H. Goodwin, E. B. Postnikov, N. Brilliantov, M. Urbakh and A. A. Kornyshev, Phys. Rev. X 9, (2019) 021024

10 Kopanichuk I, Novikov, VA, Vanin AV, Brodskaya EN “The electric properties of AOT reverse micelles by molecular dynamics simulations” J Mol Liq 2019, 296, 111960. https://doi.org/10.1016/j.molliq.2019.111960



1. Berishvili VP, Perkin VO, Voronkov AE, Radchenko EV, Syed R, Reddy CVR, et al. Time-Domain Analysis of Molecular Dynamics Trajectories Using Deep Neural Networks: Application to Activity Ranking of Tankyrase Inhibitors. Journal of Chemical Information and Modeling. 2019;59(8):3519-32.

2. Santo KP, Vishnyakov A, Kumar R, Neimark AV. Elucidating the Effects of Metal Complexation on Morphological and Rheological Properties of Polymer Solutions by a Dissipative Particle Dynamics Model. Macromolecules. 2018;51(14):4987-5000.

3. Santo KP, Vishnyakov A, Brun Y, Neimark AV. Adhesion and Separation of Nanoparticles on Polymer-Grafted Porous Substrates. Langmuir. 2018;34(4):1481-96.

4. Matveev SA, Stadnichuk VI, Tyrtyshnikov EE, Smirnov AP, Ampilogova NV, Brilliantov NV. Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregation-fragmentation models. Computer Physics Communications. 2018;224:154-63.

5. Burgess S, Vishnyakov A, Tsovko C, Neimark AV. Nanoparticle-Engendered Rupture of Lipid Membranes. Journal of Physical Chemistry Letters. 2018;9(17):4872-7.

6. Brilliantov NV, Otieno W, Matveev SA, Smirnov AP, Tyrtyshnikov EE, Krapivsky PL. Steady oscillations in aggregation-fragmentation processes. Physical Review E. 2018;98(1).

7. Brilliantov NV, Formella A, Poschel T. Increasing temperature of cooling granular gases. Nature Communications. 2018;9.